Do Sports Bettors Need Consumer Protection? Evidence From a Field Experiment

Matthew Brown Nick Grasley Mariana Guido

Stanford University

February 20, 2025

The U.S. sports betting boom

2023: 38 states, \$121 billion wagered

l

- [High-risk bettors] **think sports gambling is more skill than luck**, suggesting they're prone to **distortions in thinking...** and are generally **highly impulsive**.

National Council on Problem Gambling (2023)

- [High-risk bettors] **think sports gambling is more skill than luck**, suggesting they're prone to distortions in thinking... and are generally highly impulsive. National Council on Problem Gambling (2023)
- That's just not how consumers think about spending their **entertainment dollars** on sports. It is not an investment, it's an entertainment option. David Forman, Vice President of Research, American Gaming Association (2024)

- [High-risk bettors] **think sports gambling is more skill than luck**, suggesting they're prone to **distortions in thinking...** and are generally **highly impulsive**.

 National Council on Problem Gambling (2023)
- That's just not how consumers think about spending their **entertainment dollars** on sports. It is not an investment, it's an **entertainment option**.

 David Forman, Vice President of Research, American Gaming Association (2024)

To what extent do biases vs. preferences drive sports betting?

To what extent do biases vs. preferences drive sports betting? How would corrective policy interventions affect welfare?

3

To what extent do biases vs. preferences drive sports betting? How would corrective policy interventions affect welfare?

- Model: biased sports betting consumption
 - Overoptimism about financial returns
 - Self-control problems

To what extent do biases vs. preferences drive sports betting? How would corrective policy interventions affect welfare?

- Model: biased sports betting consumption
 - Overoptimism about financial returns
 - Self-control problems
- Bias measurement: field exp. w/ high-volume bettors & linked account data
 - Bettors substantially overestimate financial returns
 - Bettors are willing to pay to reduce future betting

To what extent do biases vs. preferences drive sports betting? How would corrective policy interventions affect welfare?

- Model: biased sports betting consumption
 - Overoptimism about financial returns
 - Self-control problems
- Bias measurement: field exp. w/ high-volume bettors & linked account data
 - Bettors substantially overestimate financial returns
 - Bettors are willing to pay to reduce future betting
- Policy implications: structural estimation & counterfactuals
 - Large average bias \rightarrow optimal corrective tax more than twice as large as status quo
 - Heterogeneous bias \rightarrow targeted interventions can do better

To what extent do biases vs. preferences drive sports betting? How would corrective policy interventions affect welfare?

- Model: biased sports betting consumption
 - Overoptimism about financial returns
 - Self-control problems
- Bias measurement: field exp. w/ high-volume bettors & linked account data
 - Bettors substantially overestimate financial returns
 - Bettors are willing to pay to reduce future betting
- Policy implications: structural estimation & counterfactuals
 - Large average bias \rightarrow optimal corrective tax more than twice as large as status quo
 - Heterogeneous bias \rightarrow targeted interventions can do better
 - Experimental evidence on a prominent targeted intervention: bias correction

3

Literature & contributions

- Primary contribution: gambling & welfare

- Potenza et al. (2019) Lockwood et al. (2021) Chegere et al. (2022) Donkor et al. (2023) Snowberg and Wolfers (2010) Gerstein et al. (1999) Grinols and Mustard (2001) Grinols and Mustard (2006) Evans and Topoleski (2002) Kearney (2005) Guryan and Kearney (2008) Guryan and Kearney (2010) Akee et al. (2015) Baker et al. (2024) Hollenbeck et al. (2024) Matsuzawa and Arnesen (2024)
- Empirical evidence on bias + model \rightarrow policy evaluation

- Supplemental contributions

- Nudges & welfare Camerer et al. (2003) Thaler and Sunstein (2003) Allcott et al. (2022) Ambuehl et al. (2022) List et al. (2023)
- Misperceptions of risky prospects Kahneman and Tversky (1979) Snowberg and Wolfers (2010) Enke and Shubatt (2023)
- Measuring overoptimism & self-control problems Malmendier and Tate (2005) Möbius et al. (2022) Gillen et al. (2019) Banerjee and Mullainathan (2010) DellaVigna and Malmendier (2006) Augenblick and Rabin (2019) Carrera et al. (2022). Laibson (2015)

Roadmap

Institutional details

Conceptual framework

Experimental evidence on bias

Overview

Overoptimism

Self-control problems

Policy evaluation

Structural estimation

Counterfactual welfare analysis

Targeted interventions

Roadmap

Institutional details

Conceptual framework

Experimental evidence on bias

Overview

Overoptimism

Self-control problems

Policy evaluation

Structural estimation

Counterfactual welfare analysis

Targeted interventions

Background on sports betting

- How sports betting works:
 - Private sportsbooks offer betting opportunites
 - Books make money when consumers lose: avg. loss of 9¢ per dollar wagered in 2023
 - Skill matters (unlike, e.g., lottery tickets)
- Mobile platforms: 94% of revenues from cell phones or computers
- Demographics: young, male, high-education & rich compared to U.S. pop
- Fat right tail: 5% highest volume bettors ightarrow 64% of revenues Forrest and McHale (2024)
 - ► Betting over time ► Seasonality

Concerns about overoptimism & self-control problems

Concerns about overoptimism & self-control problems

The role of skill & overoptimism

Every sports fan thinks he has some proprietary edge or knowledge or insight.

Nate Silver, founder of FiveThirtyEight and former profesional gambler Cowen (2024)

Concerns about overoptimism & self-control problems

The role of skill & overoptimism

Every sports fan thinks he has some proprietary edge or knowledge or insight.

Nate Silver, founder of FiveThirtyEight and former profesional gambler Cowen (2024)

Cell phones & self-control problems

They have access to it 24/7 in the palm of their hands. The temptation is always there. You can stay away from casinos and racetracks but you can't stop using your phone.

Cindi M, Gamblers Anonymous Public Relations Chair Vice (2022)

Roadmap

Institutional details

Conceptual framework

Experimental evidence on bias

Overview

Overoptimism

Self-control problems

Policy evaluation

Structural estimation

Counterfactual welfare analysis

Targeted interventions

Unbiased reasons for sports betting

- Choice object

- Agent i chooses dollars to wager x_i
- Abstract from other choices (e.g., "inner nest" choices over particular bets)

Unbiased reasons for sports betting

- Choice object

- Agent i chooses dollars to wager x_i
- Abstract from other choices (e.g., "inner nest" choices over particular bets)

- Financial value

- Total returns to betting: $x_i \cdot a$; $a \in [-1, \infty)$
- Return distribution $F_i(a)$
- Implicit price of betting $-E_{F_i}[a]$

Unbiased reasons for sports betting

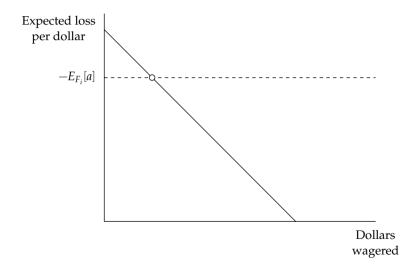
- Choice object

- Agent i chooses dollars to wager x_i
- Abstract from other choices (e.g., "inner nest" choices over particular bets)

- Financial value

- Total returns to betting: $x_i \cdot a$; $a \in [-1, \infty)$
- Return distribution $F_i(a)$
- Implicit price of betting $-E_{F_i}[a]$
- **Nonfinancial value** (e.g., "entertainment")
 - Makes watching sports fun, enjoyment of planning, relieves stress... → Survey evidence

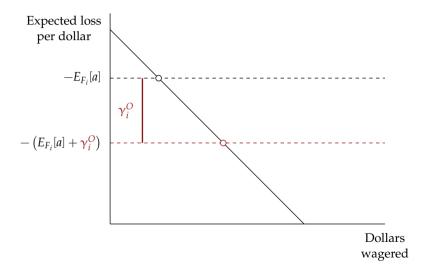
An unbiased demand curve for agent i



Overoptimism as a misperceived price

- True expected returns
 - $E_{F_i}[a]$
- Perceived expected returns
 - Perceptions \tilde{F}_i
 - Overoptimism $\gamma_i^O = E_{F_i}[a] E_{\tilde{F}_i}[a]$

Illustrating overoptimism graphically

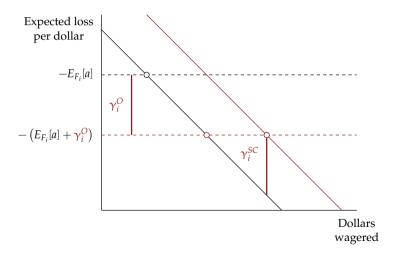


Self-control problems as in-the-moment temptation utility

- Distinguish between long-term demand and short-term demand
- In short-term, choose as if marginal utility of betting is γ_i^{SC} higher (Banerjee and Mullainathan, 2010)
- Intuition: people "wish they could stop self" from betting, but cannot (Potenza et al., 2019)

Illustrating self-control problems graphically

Distinguish between long-term demand and short-term demand



Roadmap

Institutional details

Conceptual framework

Experimental evidence on bias

Overview

Overoptimism Self-control problems

Policy evaluation

Structural estimation

Counterfactual welfare analysis

Targeted interventions

Recruitment

- Pop. of interest: **high-volume bettors**
 - Targeted social media ads
 - Screen on self-reported volume
- Study requirements
 - Take three surveys over two months
 - Share data on sports betting activity

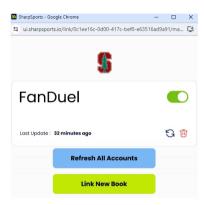
Collecting betting activity data

1) Elicit list of accounts

Which of the following mobile apps or websites have you used for **sports betting** (not casino games or Daily Fantasy Sports) in the past 30 days? Select all that apply.

☐ DraftKings				
☐ FanDuel				
☐ BetMGM				
☐ Caesars				
☐ ESPNBet				
☐ Hard Rock	Bet			
Other (plea	ase specify)			

2) Sync accounts via online portal



Experimental sample

Phase	Date	Action	Sample Size
Recruitment and intake	March 13 - April 8	Viewed social media ads	545,197
		Clicked on ads	12,912
		Satisfied initial eligibility criteria	6,155
		Consented and provided contact info	2,062
		Synced at least one account	666
		Synced all accounts	555
Survey 1	April 9	Completed survey 1	533
Survey 2	May 10	Completed surveys 1 and 2	486
Survey 3	June 10	Completed surveys 1, 2, and 3	472
		Data through end of survey 3	444

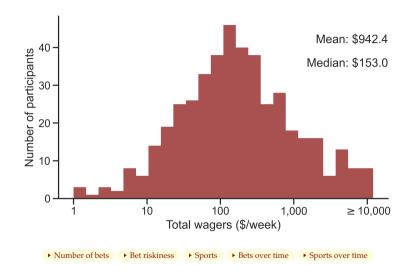
Experimental sample

Phase	Date	Action	Sample Size
Recruitment and intake	March 13 - April 8	Viewed social media ads	545,197
		Clicked on ads	12,912
		Satisfied initial eligibility criteria	6,155
		Consented and provided contact info	2,062
		Synced at least one account	666
		Synced all accounts	555
Survey 1	April 9	Completed survey 1	533
Survey 2	May 10	Completed surveys 1 and 2	486
Survey 3	June 10	Completed surveys 1, 2, and 3	472
		Data through end of survey 3	444

- Representativeness • Table

- Less biased on qualitative measures than comparison sample (Grubbs and Kraus, 2023)
- Interpret bias estimates as **conservative** for population

Pre-study betting activity



Roadmap

Institutional details

Conceptual framework

Experimental evidence on bias

Overview

Overoptimism

Self-control problems

Policy evaluation

Structural estimation

Counterfactual welfare analysis

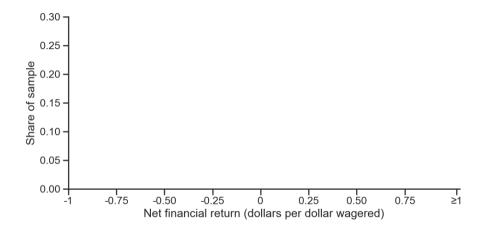
Targeted interventions

Do people overestimate future returns?

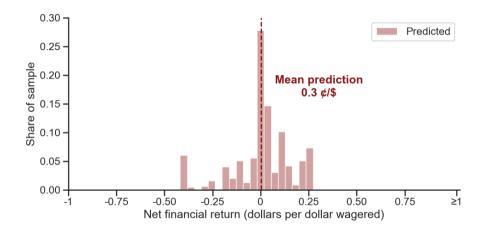
Your future sports bets on DraftKings

l will	Gain money on average	Break even	Lose money on average
Or	n average, I will gain \$	for eve	ry \$100 that I wager.

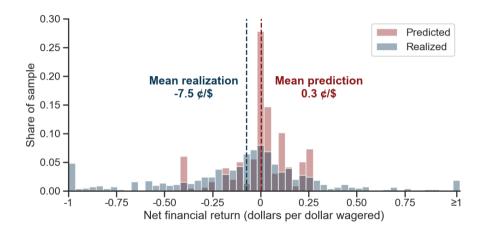
Do people overestimate future returns?



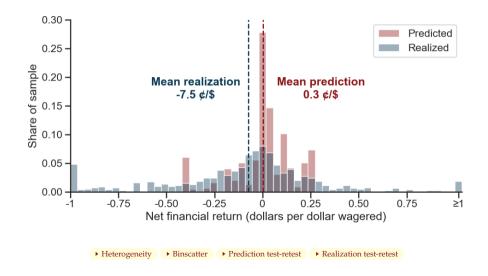
Do people overestimate future returns?



Do people overestimate future returns?



Do people overestimate future returns?



Contextualizing this magnitude

- Sports betting is costly
 - Our sample: lose 7.5¢/\$
 - American consumers in 2023: lose \$11 bn (9¢/\$) (American Gaming Association, 2024)

Contextualizing this magnitude

- Sports betting is costly
 - Our sample: lose 7.5¢/\$
 - American consumers in 2023: lose \$11 bn (9¢/\$) (American Gaming Association, 2024)

On average, none of the financial costs were internalized

Suggestive evidence on mechanisms

Two exploratory results

Suggestive evidence on mechanisms

Two exploratory results

1. Overoptimism is specific to predictions about own future returns

- People do not overestimate own past returns or others' returns Hist Binscatters Summary
- Less consistent with selective memory (Bénabou and Tirole, 2002; Huffman et al., 2022)
- More consistent with selective interpretation of signals (Thaler, 2024)
 - Possibly: When I lose it is because I got unlucky, when I win it is because I am skilled

Suggestive evidence on mechanisms

Two exploratory results

Overoptimism is specific to predictions about own future returns People do not overestimate own past returns or others' returns

- Less consistent with selective memory (Bénabou and Tirole, 2002; Huffman et al., 2022)
- More consistent with selective interpretation of signals (Thaler, 2024)
 - Possibly: When I lose it is because I got unlucky, when I win it is because I am skilled

2. Overoptimism is largest for those who bet on multi-leg parlays

Background on parlays

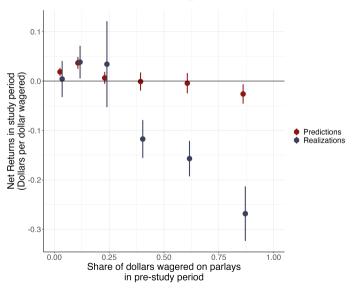
The Washington Post

Parlays are big business for sportsbooks — and big trouble for bettors

Many bettors get in trouble chasing big scores with multiple-legged parlays that often feel like a sure thing.

Washington Post (2022)

Parlay bettors are much more overoptimistic



Roadmap

Institutional details

Conceptual framework

Experimental evidence on bias

Overview

Overoptimism

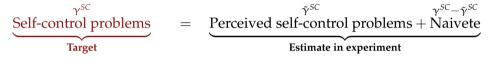
Self-control problems

Policy evaluation

Structural estimation

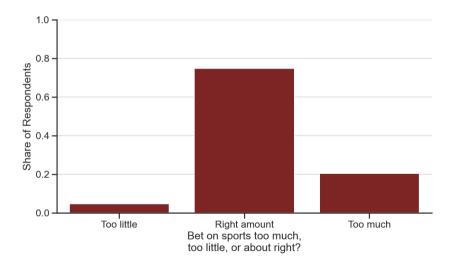
Counterfactual welfare analysis

Targeted interventions



Wedge between LR & SR demand

Most people do not say they are betting too much



Do people want to bet less?

The Bet Less Bonus

In this part of the survey, we'll introduce the **Bet Less Bonus**. You may have the opportunity to **earn money by betting less on sports over the next 30 days!**

- Rate: **2¢ payment for every dollar** reduced below a personalized benchmark
 - Active for 30 days between surveys 1 and 2

Valuations of Bet Less Bonus identify perceived self-control problems

Intuition

- Perceived self-control problems → want Bonus more
 - Predict future self will overconsume
 - Would pay to bring future consumption more in line with optimum

Valuations of Bet Less Bonus identify perceived self-control problems

Intuition

- Perceived self-control problems → want Bonus more
 - Predict future self will overconsume
 - Would pay to bring future consumption more in line with optimum

Empirical Implementation

- Elicit WTP for Bonus with incentivized MPL Choice 1 Choice 2
- WTP for Bonus + consumption predictions \rightarrow perceived self-control problems $\tilde{\gamma}^{SC}$
 - Mechanics follow Carrera et al. (2022) → Behavior Change Premium

Perceived self-control problems are smaller than overoptimism

- High average WTP for Bonus → people want to reduce future consumption → Result
 - Estimate: Average perceived self-control problems $E[\tilde{\gamma}_i^{SC}] = 0.7 c/\$$
 - Validation: larger estimate for those who say "I am betting too much" Result
- Overoptimism is an order of magnitude larger
 - Average overestimation of financial returns \rightarrow average overoptimism $E[\gamma_i^O] = 7.8 c/\$$

Underestimation of future consumption identifies naivete

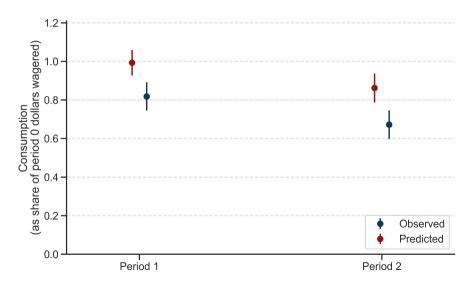
Intuition:

- Naive agents don't realize their future self will be tempted
- So they'll underestimate future consumption

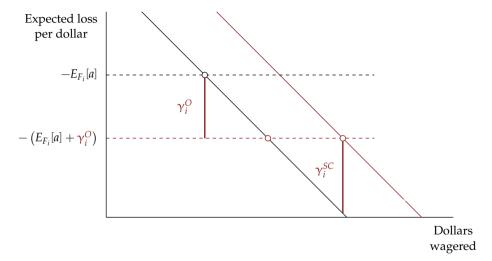
Empirical Implementation (Augenblick and Rabin, 2019):

- Elicit predicted future consumption in Surveys 1 & 2

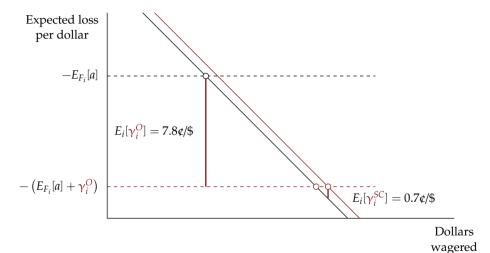
People do not underestimate future consumption



Taking stock



Taking stock



33

Roadmap

Institutional details

Conceptual framework

Experimental evidence on bias

Overview

Overoptimism

Self-control problems

Policy evaluation

Structural estimation

Counterfactual welfare analysis

Targeted interventions

- Goal: Evaluate policy regimes
- Approach: Structural estimation + counterfactual simulations To results

- Goal: Evaluate policy regimes
- **Approach:** Structural estimation + counterfactual simulations To results
 - Estimation involves two key extensions beyond the results so far

- Goal: Evaluate policy regimes
- Approach: Structural estimation + counterfactual simulations To results
 - Estimation involves two key extensions beyond the results so far
 - How would policies affect [consumption, welfare]? → demand slopes All demand estimates

- Goal: Evaluate policy regimes
- **Approach:** Structural estimation + counterfactual simulations → To results
 - Estimation involves two key extensions beyond the results so far
 - How would policies affect [consumption, welfare]? → demand slopes All demand estimates
 - How do policy impacts vary across individuals? \rightarrow heterogeneous bias \checkmark ?

Model + functional form asstn. \rightarrow constant semielasticity of demand for indiv i, period t:

▶ Microfoundation

$$E[x_{it}^{choice}(\tau)] = \exp\left(\underbrace{\xi_i + \delta_t}_{\text{Normative taste for betting}} + \underbrace{\eta_i}_{\text{Semielasticity}} \cdot (\underbrace{\tau}_{\text{Tax } (e/\$)} - \underbrace{(\gamma_i^O + \gamma_i^{SC})}_{\text{Bias } (e/\$)})\right)$$

35

Model + functional form asstn. \rightarrow constant semielasticity of demand for indiv i, period t:

▶ Microfoundation

$$E[x_{it}^{choice}(\tau)] = \exp\left(\underbrace{\xi_i + \delta_t}_{\text{Normative taste for betting}} + \underbrace{\eta_i}_{\text{Semielasticity}} \cdot (\underbrace{\tau}_{\text{Tax } (e/\$)} - \underbrace{(\gamma_i^O + \gamma_i^{SC})}_{\text{Bias } (e/\$)})\right)$$

- Estimate biases $\gamma_i^O, \gamma_i^{SC}$ & price-sensitivity η_i

Model + functional form asstn. \rightarrow constant semielasticity of demand for indiv i, period t:

▶ Microfoundation

$$E[x_{it}^{choice}(\tau)] = \exp\left(\underbrace{\xi_i + \delta_t}_{\text{Normative taste for betting}} + \underbrace{\eta_i}_{\text{Semielasticity}} \cdot (\underbrace{\tau}_{\text{Tax } (e/\$)} - \underbrace{(\gamma_i^O + \gamma_i^{SC})}_{\text{Bias } (e/\$)})\right)$$

- Estimate biases γ_i^O , γ_i^{SC} & price-sensitivity η_i
 - **Overoptimism:** shrinkage to deal with noise \rightarrow individual-specific estimates \rightarrow Details
 - ▶ Estimates

Model + functional form asstn. \rightarrow constant semielasticity of demand for indiv i, period t:

▶ Microfoundation

$$E[x_{it}^{choice}(\tau)] = \exp\left(\underbrace{\xi_i + \delta_t}_{\text{Normative taste for betting}} + \underbrace{\eta_i}_{\text{Semielasticity}} \cdot (\underbrace{\tau}_{\text{Tax } (\mathfrak{C}/\$)} - \underbrace{(\gamma_i^O + \gamma_i^{SC})}_{\text{Bias } (\mathfrak{C}/\$)})\right)$$

- Estimate biases $\gamma_i^O, \gamma_i^{SC}$ & price-sensitivity η_i
 - Overoptimism: shrinkage to deal with noise → individual-specific estimates → Details
 - ▶ Estimates
 - Self-control problems: estimate separately according to "betting too much?" response
 - ▶ Estimates

Model + functional form asstn. \rightarrow constant semielasticity of demand for indiv i, period t:

▶ Microfoundation

$$E[x_{it}^{choice}(\tau)] = \exp\left(\underbrace{\xi_i + \delta_t}_{\text{Normative taste for betting}} + \underbrace{\eta_i}_{\text{Semielasticity}} \cdot (\underbrace{\tau}_{\text{Tax } (\mathfrak{C}/\$)} - \underbrace{(\gamma_i^O + \gamma_i^{SC})}_{\text{Bias } (\mathfrak{C}/\$)})\right)$$

- Estimate biases $\gamma_i^O, \gamma_i^{SC}$ & price-sensitivity η_i
 - **Overoptimism:** shrinkage to deal with noise → individual-specific estimates → Details → Estimates
 - **Self-control problems:** estimate separately according to "betting too much?" response
 - **Price-sensitivity:** multiple estimates (Bonus TE, pred. effect of natural price changes)
 - ► Substitution to other gambling Curvature
 - Average: 1¢/\$ price increase \rightarrow consumption \downarrow by [10%, 21%] $\stackrel{\blacktriangleright}{}$ All estimates $\stackrel{\blacktriangleright}{}$ Heterogeneity
 - Preferred estimate: consumption \downarrow by 11%

Roadmap

Institutional details

Conceptual framework

Experimental evidence on bias

Overview

Overoptimism

Self-control problems

Policy evaluation

Structural estimation

Counterfactual welfare analysis

Targeted interventions

Counterfactual details

- Welfare criterion:

$$\sum_{i} \left(\Delta C S_{it} \right) + \lambda \Delta G_{t}$$

- Weight λ on government revenue vs. bettor consumer surplus
- Benchmark: $\lambda = 1$
- Assumption: Taxes pass through one-to-one to perceived prices
 - 1% tax $\uparrow \rightarrow$ 1% house cut \uparrow (simplified supply side)
 - Consumers perceive changes in house cut (rules out imperf. salience (Chetty et al., 2009))

- Status quo

- $\tau_0 = 2.02\%$ of dollars wagered (average combined state + federal rate, 2023)
- Use t = -1 demand (Feb 8 to March 9)

Policies

- First-best benchmark

- Uniform tax

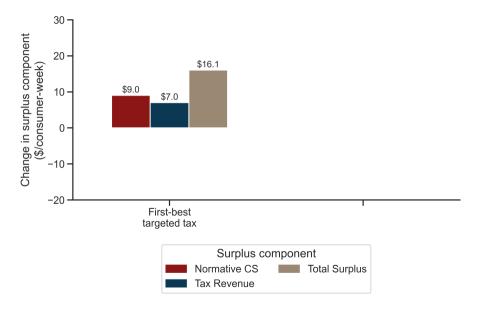
- Targeted interventions

Policies

- First-best benchmark
 - Personalized tax $au_i^* = \gamma_i^O + \gamma_i^{SC}$
 - All costs internalized \rightarrow first-best consumption
- Uniform tax

- Targeted interventions

First best benchmark



Computing the optimal uniform tax rate

- Optimal rate: weighted avg. of bias (Diamond, 1973; Allcott and Taubinsky, 2015)

$$\tau^* = E_i[w_i \cdot (\gamma_i^O + \gamma_i^{SC})]$$

- Interpretation:
 - $w_i \propto$ slope of demand curve
 - Average bias for consumption that is marginal to a price change

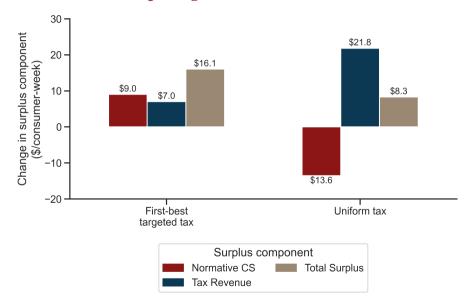
Computing the optimal uniform tax rate

- Optimal rate: weighted avg. of bias (Diamond, 1973; Allcott and Taubinsky, 2015)

$$\tau^* = E_i[w_i \cdot (\gamma_i^O + \gamma_i^{SC})]$$

- Interpretation:
 - $w_i \propto$ slope of demand curve
 - Average bias for consumption that is marginal to a price change
- Result: Optimal rate $\tau^* = 5.17\%$ Alternate weights on G
 - Much larger than status quo rate (2.02%)
 - Smaller than unweighted average
 - High volume \rightarrow larger demand response \rightarrow higher weight
 - High volume → less overoptimistic → Result

Uniform taxes leave surplus gains on the table Outright bans



Roadmap

Institutional details

Conceptual framework

Experimental evidence on bias

Overview

Overoptimism

Self-control problems

Policy evaluation

Structural estimation

Counterfactual welfare analysis

Targeted interventions

Bias correction as a targeted intervention

- Politically feasible

- Public commitments to "responsible gaming" (RG)
- Some regulators require RG efforts for licensing

- Theoretically appealing

- Well-targeted by design
- Central to case for behavioral interventions across contexts (Camerer et al., 2003; Thaler and Sunstein, 2003; Allcott et al., 2022; List et al., 2023)
- But **challenging in practice** to remove bias

Bias correction as a targeted intervention

- Politically feasible
 - Public commitments to "responsible gaming" (RG)
 - Some regulators require RG efforts for licensing
- Theoretically appealing
 - Well-targeted by design
 - Central to case for behavioral interventions across contexts (Camerer et al., 2003; Thaler and Sunstein, 2003; Allcott et al., 2022; List et al., 2023)
- But **challenging in practice** to remove bias

How well do sportsbooks' bias correction interventions work in practice?

Transparency treatment

Transparency treatment

DraftKings Launches "My Stat Sheet" – A New Tool to Promote Responsible Gaming

Designed to "help customers evaluate their play and make informed choices" Jennifer Aguiar, DraftKings Chief Compliance Officer (2024)

Transparency treatment

DraftKings Launches "My Stat Sheet" – A New Tool to Promote Responsible Gaming

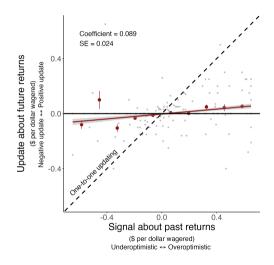
You said you won \$4 for every \$100 that you wagered.

In fact, you **lost \$2** for every \$100 that you wagered.

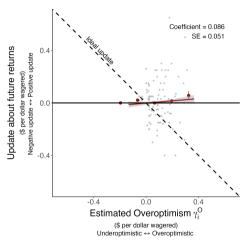
This calculation used data from 236 bets on DraftKings and BetMGM in 2024.

Designed to "help customers evaluate their play and make informed choices" Jennifer Aguiar, DraftKings Chief Compliance Officer (2024)

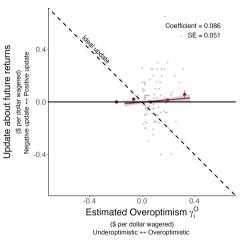
Information about past returns impacts beliefs



Information about past returns does not reduce bias



Information about past returns does not reduce bias



- 1. On average, people do not overestimate past returns (avg. $TE \approx 0$).
- 2. Mistakes about **past** returns \perp mistakes about **future** returns (poor targeting).

Takeaways on bias correction & targeting • Limits treatment • Outright bans

Takeaways on bias correction & targeting • Limits treatment • Outright bans

- Bias correction attractive in theory, but implementation matters
 - History transparency doesn't correct overoptimism!

Takeaways on bias correction & targeting • Limits treatment • Outright bans

- Bias correction attractive in theory, but implementation matters
 - History transparency doesn't correct overoptimism!
- Still want efficency gains from targeting. What could we do instead?

Takeaways on bias correction & targeting Limits treatment

- Bias correction attractive in theory, but implementation matters
 - History transparency **doesn't correct overoptimism!**
- Still want efficency gains from targeting. What could we do instead?
 - Can we design better bias correction interventions?

Takeaways on bias correction & targeting Limits treatment

- ▶ Outright bans

- Bias correction attractive in theory, but implementation matters
 - History transparency **doesn't correct overoptimism!**
- Still want efficency gains from targeting. What could we do instead?
 - Can we design better bias correction interventions?
 - Focus on appropriate mechanisms: help people *interpret* their histories

Takeaways on bias correction & targeting Limits treatment Outright bans

- Bias correction attractive in theory, but implementation matters
 - History transparency doesn't correct overoptimism!
- Still want efficency gains from targeting. What could we do instead?
 - Can we design better bias correction interventions?
 - Focus on appropriate mechanisms: help people interpret their histories
 - Regulate products where bias is concentrated (parlays) Background Result
 - Higher taxes, restrictions on advertising, etc.

Conclusion

- Novel evidence on biases among high-volume sports bettors
 - Average participant predicts they will break even; in fact loses 7.5¢ on the dollar
 - Participants would pay small premia to reduce future betting

- Policy evaluation

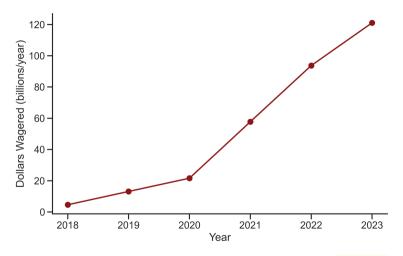
- Large average bias \implies optimally do more to reduce consumption (e.g., higher taxes)
- Heterogeneous bias ⇒ efficiency gains from targeted instruments
 - Bias correction: challenging in practice
 - One alternative: differentially regulate parlays

Conclusion

- Novel evidence on biases among high-volume sports bettors
 - Average participant predicts they will break even; in fact loses 7.5¢ on the dollar
 - Participants would pay small premia to reduce future betting
- Policy evaluation
 - Large average bias ⇒ optimally do more to reduce consumption (e.g., higher taxes)
 - Heterogeneous bias \implies efficiency gains from targeted instruments
 - Bias correction: challenging in practice
 - One alternative: differentially regulate parlays

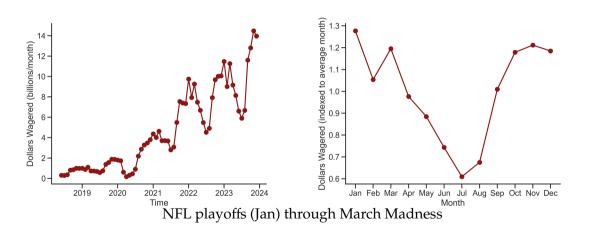
Thank you! mbrown35@stanford.edu

Legal sports betting has been rapidly increasing since 2018 • Back

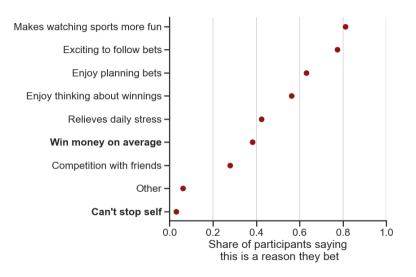


Source: Legal Sports Report Revenue & Handle Tracker Seasonality

Sports betting consumption peaks in the winter • Back



Stated reasons for betting •Back

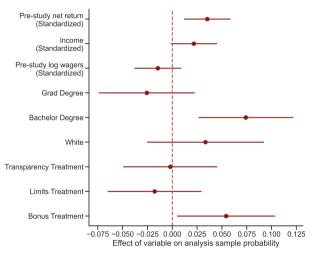


Comparing to an external representative sample Back

Variable	Weekly Sports Bettors	Analysis Sample	
N	517	444	
Demographics			
Age	41.47	39.92	
White	0.59	0.81	
Male	0.69	0.96	
Bachelor's degree or higher	0.50	0.82	
Graduate degree	0.19	0.39	
Household income (\$000s)	101 (84)	156 (116)	
Qualitative bias measures			
Gambling Literacy Index	1.53 (3.03)	3.55 (2.05)	
Problem Gambling Severity Index	6.77 (5.06)	2.89 (2.85)	

The table presents variable means (SDs). "Weekly Sports Bettors" are from Grubbs and Kraus (2022) Other subsamples

Attrition Tests Back

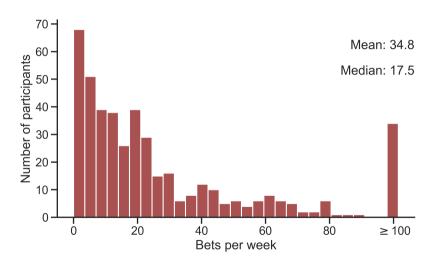


*AnalysisSample*_i = $\alpha + \beta x_i + \varepsilon_i$ for participants who completed Survey 1

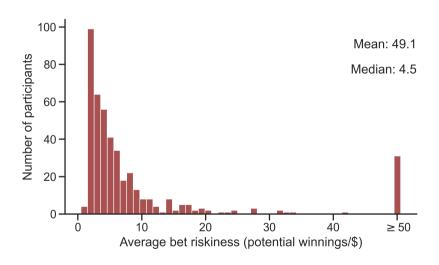
Demographics and qualitative measures by subsample Back

Variable	Grubbs and Krauss			Brown, Grasley, and Guido	
	Census Matched	Weekly Lottery	Weekly Sports	Unweighted	Weighted
N	2806	406	517	444	444
Demographics					
Age	51.59	55.21	41.47	39.92	38.35
White	0.66	0.62	0.59	0.81	0.75
Male	0.46	0.53	0.69	0.96	0.92
Bachelor's degree or higher	0.34	0.25	0.50	0.82	0.55
Graduate degree	0.13	0.08	0.19	0.39	0.21
Household income (\$000s)	68 (62)	67 (57)	101 (84)	156 (116)	111 (95)
Qualitative bias measures					
Gambling Literacy Index	4.00 (2.30)	3.12 (2.74)	1.53 (3.03)	3.55 (2.05)	1.73 (2.30)
Problem Gambling Severity Index	0.99 (2.69)	2.83 (4.21)	6.77 (5.06)	2.89 (2.85)	6.15 (3.97)

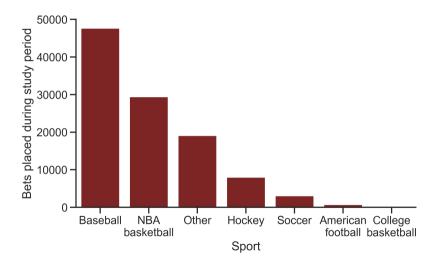
Number of bets • Back



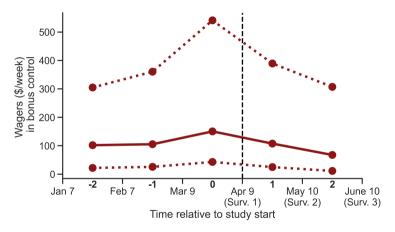
Bet riskiness Back



Sports Back

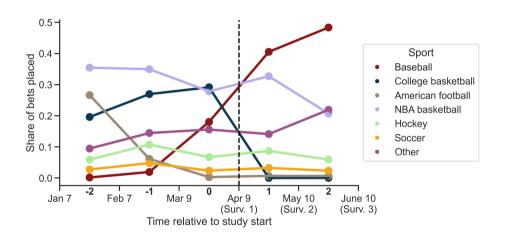


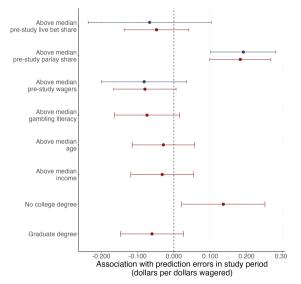
Bets over time → Back



Note: solid lines represent the median, dashed lines represent 25th and 75th percentiles

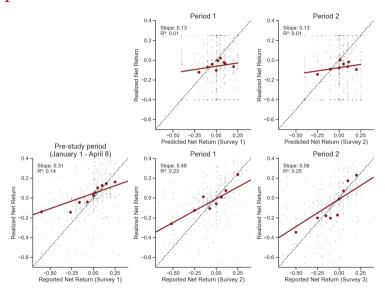
Sports over time Back



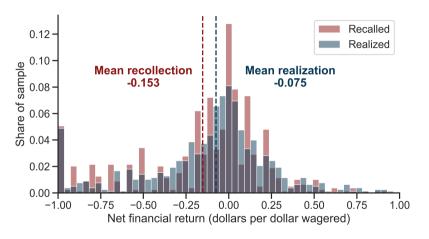


Specification ◆ OLS ◆ ORIV

Binscatters: predictions & recollections vs. realizations

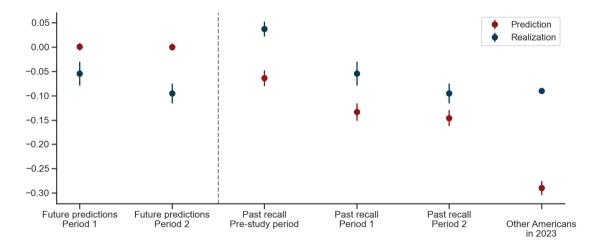


Recollections of own past returns •Back

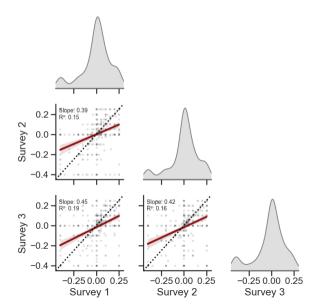


Recollections from surveys 2 & 3

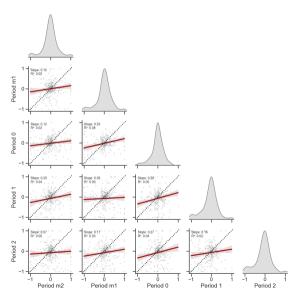
Summary of return mispredictions • Back



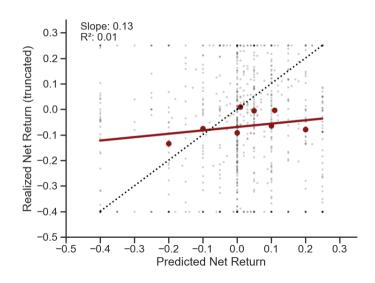
Correlation of predictions over time •Back



Correlation of returns over time Back



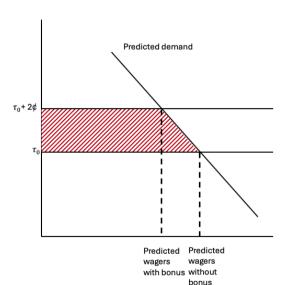
Predictions predict future returns • Back



Time-consistent bonus valuations • Back

Value of Bet Less Bonus = Unconditional Transfer - CS Loss from $\tau \uparrow$

- Unconditional Transfer: maximum bonus value
- CS Loss from τ \uparrow : area under demand curve given pred. demand response
- Assumes risk-neutral, ≈ linear demand



Eliciting Bonus Valuations: Binary Choice Back

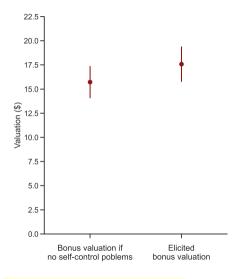
How might you decide?

- You might prefer \$12 instead of the Bet Less Bonus if you don't want any pressure to bet less.
- You might prefer the Bet Less Bonus instead of \$12 if you want to give yourself extra incentive to bet less.

Eliciting Bonus Valuations: Multiple Price List Back

	Option A	Option B	
Fixed payment of \$35	0	0	Bet Less Bonus
Fixed payment of \$24	0	0	Bet Less Bonus
Fixed payment of \$19	0	0	Bet Less Bonus
Fixed payment of \$13	0	0	Bet Less Bonus
Fixed payment of \$12	0	0	Bet Less Bonus
Fixed payment of \$11	0	0	Bet Less Bonus
Fixed payment of \$6	0	0	Bet Less Bonus
Fixed payment of \$0	0	0	Bet Less Bonus

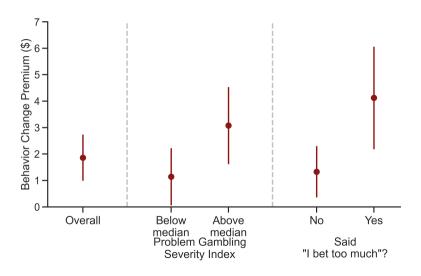
People are willing to pay to reduce future betting • Back



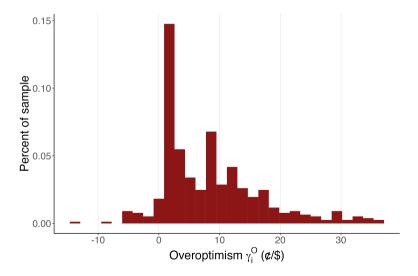
- Study the **Behavior Change Premium** (Carrera et al., 2022)
- Definition: Excess valuation of Bonus
- Interpretation: WTP for reduction in betting
- Measure of perceived self-control problems
 - ▶ Corr with qualitative measures

▶ Constructing no self-control problems valuation

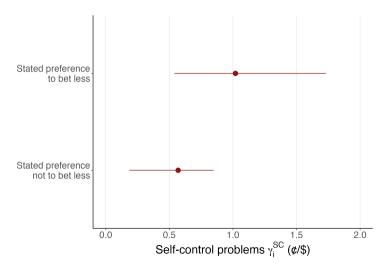
▶ Back to main



▶ Back to summary



Heterogeneity in self-control problems • Back



Microfoundation of demand curve Back

- Quasilinear utility

$$u_i(x) = \underbrace{y_i + \underbrace{E_{\tilde{F}_i}[a] \cdot x}_{\text{Financial value of gambling}}}_{\text{Uility from numeraire consumption}} + \underbrace{z_i(x; \tilde{F}_i) + \gamma_i^{SC} x}_{\text{Nonfinancial value of gambling}}$$

- Functional from of nonfinancial utility

$$z_i(x) = z_{1i}\log(x) + z_{2i}x + g_i(\tilde{F})x + h_i(\tilde{F})$$

- FOC with respect to *x* yields constant semielasticity of demand

- Multiple independent sources of evidence on semielasticities η_i
 - Randomized TE of Bet Less Bonus Substitution patterns
 - Predicted effect of (hypothetical) price changes (e.g., changes in house cut)
 - ▶ Validating predictions
 ▶ Varying payment rates

- Multiple independent sources of evidence on semielasticities η_i
 - Randomized TE of Bet Less Bonus Substitution patterns
 - Predicted effect of (hypothetical) price changes (e.g., changes in house cut)
 - ▶ Validating predictions
 ▶ Varying payment rates

- Results

- Semielasticity estimate range: $E_i[\eta_i] = [-0.21, -0.10]$ \rightarrow All estimates \rightarrow Heterogeneity
 - 1¢ price $\uparrow \Longrightarrow [21\%, 10\%]$ consumption \downarrow

- Multiple independent sources of evidence on semielasticities η_i
 - Randomized TE of Bet Less Bonus Substitution patterns
 - Predicted effect of (hypothetical) price changes (e.g., changes in house cut)
 - ▶ Validating predictions
 ▶ Varying payment rates

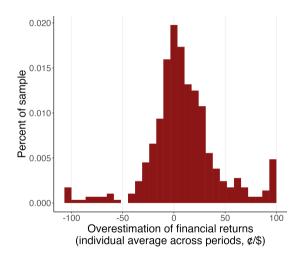
- Results

- Semielasticity estimate range: $E_i[\eta_i] = [-0.21, -0.10]$ All estimates Heterogeneity
 - 1¢ price $\uparrow \Longrightarrow [21\%, 10\%]$ consumption \downarrow
- Cond. on wager volume, overoptimistic ↔ more price-sensitive (good news for tax)

- Multiple independent sources of evidence on semielasticities η_i
 - Randomized TE of Bet Less Bonus Substitution patterns
 - Predicted effect of (hypothetical) price changes (e.g., changes in house cut)
 - ▶ Validating predictions
 ▶ Varying payment rates

- Results

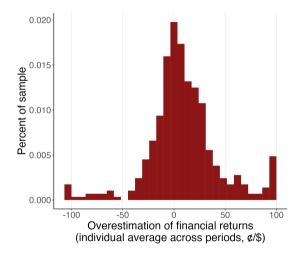
- Semielasticity estimate range: $E_i[\eta_i] = [-0.21, -0.10]$ All estimates Heterogeneity
 - $1 \notin \text{price} \uparrow \implies [21\%, 10\%] \text{ consumption} \downarrow$
- Cond. on wager volume, overoptimistic ↔ more price-sensitive (good news for tax)
- Robustness: conduct simulations for multiple estimates
 - Optimal corrective tax rate similar across estimates
 - Preferred estimate (from predictions): $E[\eta_i] = -0.11$
 - Use small estimate \rightarrow reported welfare effects conservative (Harberger, 1964)



Sources of noise

- Returns intrinsically random
- Noisy belief elicitation
- $\implies Var(Overestimation) > Var(\gamma_i^O)$

Overestimation = Overoptimism + Noise Back to main



Sources of noise

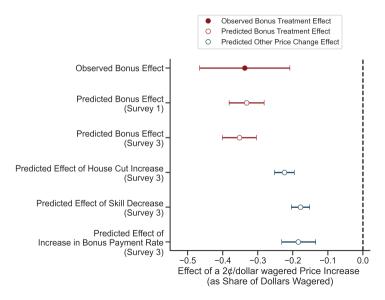
- Returns intrinsically random
- Noisy belief elicitation

$$\implies Var(Overestimation) > Var(\gamma_i^O)$$

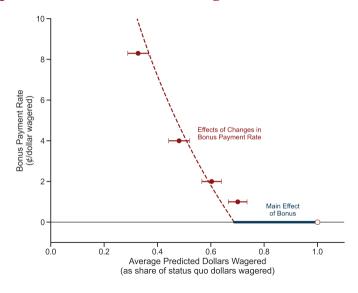
Solution: measure noise & apply shrinkage (Chen, 2024) Estimates

- Bet microdata \rightarrow return noise
- Multiple surveys \rightarrow elicit. noise

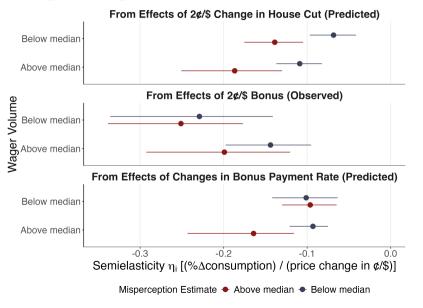
Alternative price response estimates Back to details Back to main Back to summary



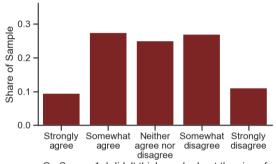
Predicted response to Bonus rate changes Back to Meal De Back to Main



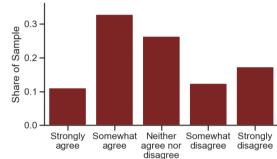
Heterogeneous price responses for all estimates Back to main



Qualitative evidence on Bonus main effects • Back

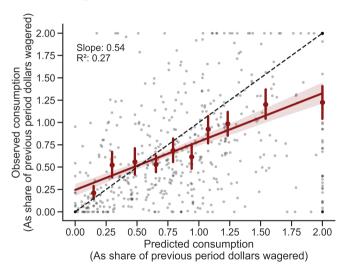


On Survey 1, I didn't think much about the size of the Bet Less Bonus. If, instead of a \$6 payment for every \$10 that I reduced my average daily betting, I had been offered a \$3 or \$10 payment instead, I probably would have reduced my betting by about the same amount.

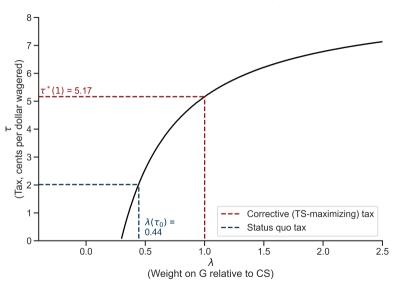


If am chosen for the Bet Less Bonus, I will assume that the researchers want me to reduce my betting. Therefore, I will feel extra pressure to do that.

Evidence on validity of prediction data •Back



Optimal uniform taxes as a function of weight on revenue • Back



Limits treatment Back to main

Edit Weekly Wagering Limit

Set how much you can wager on Sportsbook and Casino per week.

Wager Amount \$

Progress towards limit resets at 12am UTC every Sunday (7/8 pm EST/EDT)

Note: You can make your limit more restrictive at any time. When making a limit less restrictive, you must confirm the new limit after the current limit expires.

Save

Remove

Limits treatment → Back to main

Edit Weekly Wagering Limit

Set how much you can wager on Sportsbook and Casino per week.

Wager Amount -

Progress towards limit resets at 12am UTC every Sunday (7/8 pm EST/EDT)

Note: You can make your limit more restrictive at any time. When making a limit less restrictive, you must confirm the new limit after the current limit expires.

Save

Remove

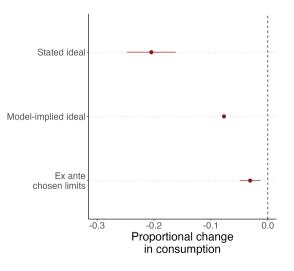
- 1. Elicit ideal wagers in typical week
- 2. Explain in-app limits
- 3. Prompt active choice

You must choose some weekly limit. You may choose a very small limit (like \$1), a very large limit (like \$9,999,999), or anything in between.

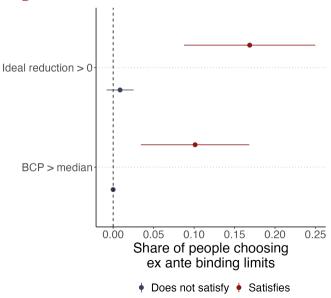
DraftKings weekly limit \$
BetMGM weekly limit \$
Total weekly limit: \$

Ideal total weekly wagers: \$125 Elicited ideal

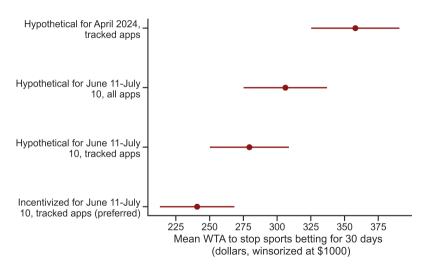
People choose more flexible limits than ideal • Back to main



Limits are well-targeted Back Back to main



WTA to stop betting: alternative elicitations • Back



Analysis of bans requires new evidence

- Do bans enhance welfare? ↔ Is normative CS positive?

Normative CS = Perceived Net Benefits + Uninternalized Costs

- Results so far: costs > benefits for *marginal wagers*
- Need to compare *total* perceived benefits to *total* costs

Analysis of bans requires new evidence

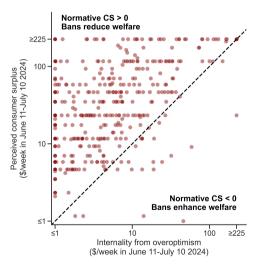
- Do bans enhance welfare? \leftrightarrow Is normative CS positive?

Normative CS = Perceived Net Benefits + Uninternalized Costs

- Results so far: costs > benefits for *marginal wagers*
- Need to compare *total* perceived benefits to *total* costs
 - Use WTA to stop betting for a 30-day period
 - Incentivized BDM elicitation
 - No naivete \rightarrow self-control problems are internalized in elicited WTA
 - Only uninternalized cost is from overoptimism

High perceived benefits ⇒ bans do not enhance welfare → Back to tax

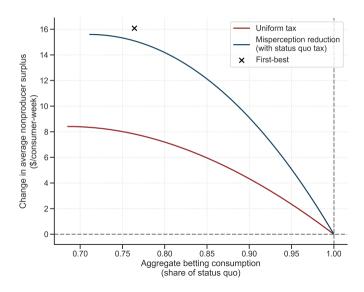
▶ Back to targeting



Caveat: such WTAs known to be sensitive to experimental procedures (Allcott et al., 2020)

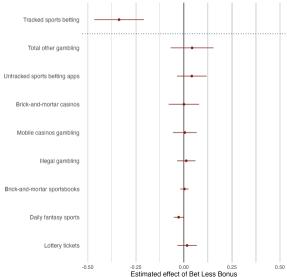
Targeting shifts tradeoff between restrictiveness & total surplus

▶ Back to main



Substitution from tracked sportsbooks to other kinds of betting PBack

▶ Back to main



References

- R. K. Q. Akee, K. A. Spilde, and J. B. Taylor. The Indian Gaming Regulatory Act and Its Effects on American Indian Economic Development. *Journal of Economic Perspectives*, 29 (3):185–208, Sept. 2015. ISSN 0895-3309. doi: 10.1257/jep.29.3.185.
- H. Allcott and D. Taubinsky. Evaluating Behaviorally Motivated Policy: Experimental Evidence from the Lightbulb Market. *American Economic Review*, 105(8):2501–2538, Aug. 2015. ISSN 0002-8282. doi: 10.1257/aer.20131564.

H. Allcott, L. Braghieri, S. Eichmeyer, and M. Gentzkow. The Welfare Effects of Social

- Media. *American Economic Review*, 110(3):629–676, Mar. 2020. ISSN 0002-8282. doi: 10.1257/aer.20190658.

 H. Allcott, D. Cohen, W. Morrison, and D. Taubinsky. When do "Nudges" Increase
- Welfare?, Dec. 2022.
 S. Ambuehl, B. D. Bernheim, and A. Lusardi. Evaluating Deliberative Competence: A Simple Method with an Application to Financial Choice. *American Economic Review*, 112 (11):3584–3626, Nov. 2022. ISSN 0002-8282. doi: 10.1257/aer.20210290.
- T. American Gaming Association. CY 2023 AGA Commercial Gaming Revenue Tracker, 2024.