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A Materials and Methods

A.1 Media outlet slant

We identify media outlets from Altmetrics (discussed below) and (Bakshy et al. (1)).

(Bakshy et al. (1)) provides our measure of outlet slant, which we refer to as the BMA

score. The BMA score captures the self-reported ideology of an outlet’s online consumers.

Each news article in their data receives an alignment score between -2 and 2, based on

the average self-reported ideology of the users sharing the article on Facebook. Articles

shared mostly by liberals receive negative scores, while those shared mostly by conservatives

receive positive scores. The outlet’s BMA score is the mean ideology of all its articles.

A.2 Citations of research by media outlets

We use Altmetric to construct our media citation data. Altmetric is a bibliometric

database that scrapes the websites of thousands of major news outlets every day, counting

every instance that a scientific paper is mentioned. Altmetric began scraping news sites in

early 2013, and we conducted our search in December 2021. These dates are the bounds

for our news sample. Over this time period, Altmetric’s text mining capabilities improved,

so we observe more citations in later years.

Most citations identified by the Altmetric scraping tool are from news articles that

include hyperlinks to scientific journal websites papers or DOIs. A minority of citations

are also identified via text mining. For a citation to be identified via text mining, the

news article must include the scientist’s name, a publication date, and the name of the

publishing journal. Some prominent news outlets have few observations or are missing
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from the Altmetric database (for example, the Wall Street Journal). The reason is that

Altmetric cannot scrape websites with restricted content such as paywalls.1

Many news organizations publish stories written by journalists at independent organi-

zations, such as the Associated Press (AP). An article from an AP reporter about a topic of

national interest might appear in dozens of local newspapers. Since individual news outlets

have relatively little agency over the content that appears in these syndicated articles, we

restrict our sample to articles that are only published in a single news outlet. In particular,

we drop all observations for which multiple news articles share an identical title.

We a priori exclude two websites2 that specialize in science coverage. We also drop

news outlets with fewer that cover less than 20 scientific articles. Our final sample consists

of 139 media outlets.

A.3 Scientific papers

Our primary data source for scientific articles is Dimensions ((2)). Dimensions is a

large database that aggregates information on different features of scientific articles. This

includes bibliometric information, funding data, patents, and so on.

For each day from 2015 to 2020, we queried the Dimensions for the thousand scientific

articles with the most academic citations that were released on that day. Our initial sample

contains 2, 184, 628 scientific articles.

For each paper, we collect data on authors: names, university affiliations, fields, and

locations. We also collect paper-level variables such as field of research, journal of publica-

tion, and year of publication. Last, we collect information on different quality measures of

research: number of scientific citations, journal impact, research funding, patent citations,

and policy citations.

A.3.1 Interpretation of quality measures

In our analysis, we use the aforementioned measures to capture the scientific quality

of an article. In general, it is challenging to define and measure the quality of science. A

key reason is that the quality of a scientific article is multifaceted. For example, scientific

quality can be defined based on impact, plausibility, novelty, practical applicability, or

relevance. Any measure of quality will likely miss important notions of quality. This

1Source: Personal correspondence with Altmetric
2globalresearch.ca and iflscience.com
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incomplete measurement of scientific quality is important for our analysis, especially if we

systematically exclude measures of quality that are valued by outlets of a certain ideology.

We attempt to overcome this limitation by developing a quality index that captures

different notions of quality. Our index is based on number of scientific citations, quality of

the journal, research funding, and patent citations for a scientific article. These measures

capture quality from different perspectives. Scientific citations capture relevance from the

perspective of other scientists. Research funding captures potential value from a funder’s

perspective. Patent citations capture the practical applicability of a scientific article. We

contend that these measures capture a wide range of quality criteria. However, we recognize

that our measure may still remain incomplete.

We construct our quality index by performing a Principal Component Analysis on the

four measures discussed above. Our index is the first principal component.

A.4 Donation-based ideology scores

We use the Database on Money, Ideology, and Elections (DIME) (3) to construct ide-

ology scores for scientific papers. DIME compiles public data on political contributions to

U.S. politicians at the federal, state, and local levels from 1976-2014. Each contributor’s

donation behavior is summarized by a Campaign Finance (CF) Score, which places the

contributor on a one-dimensional left-right scale (4).

A.5 Linking DIME and dimensions

In this section, we explain our procedure to link CF Scores to scientists, and then to

papers.

We begin by dropping all DIME contributors whose most recent donation was earlier

than 2006. Excluding these observations limits noise, since people who donated in the

distant past are unlikely to be writing scientific papers in the time period we study. Next,

we construct subsamples of recent contributors whose occupations indicate that they are

likely to be researchers. In our strict donor sample, we include only those individuals

whose self-reported occupation is “professor,” “scientist,” or “researcher.” The strict donor

sample contains 71,473 observations. In our expanded donor sample, we also include those

whose occupation is “student,” “physician,” and “doctor.” The expanded donor sample

contains 248,778 observations.

Similarly, beginning from the Dimensions sample of authors, we construct a sample of
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unique authors. We restrict the sample to researchers who are affiliated with an institution

in the U.S. This U.S. author subsample contains 4,492,819 observations.

We extract first names and last names from each donor and author. We then computed

Levenshtein distances between author names and donor names. The algorithm for our

preferred linking procedure is as follows.

• Using the expanded donor sample, consider all pairs of scientists and donors where

the name distance is less than or equal to one.

• Select links where the scientist matches to a single donor.

• Select links where the donor is a part of the strict donor sample, and the donor and

the author are in the same state.

• Select links where the donor is a part of the strict donor sample, and the donor’s

name exactly matches the author’s name (distance is 0).

• Drop all unmatched scientists.

We are able to assign a CF score to 259, 826 scientists (5.7% of the U.S. author sub-

sample) using our procedure.

Finally, we transform our individual-level ideology scores to paper-level scores. We

define a paper’s CF Score to be the average CF Score of the papers’ authors for whom a

link existed in DIME. The final linked sample consists of 661, 923 scientific papers with CF

Scores.

A.5.1 Validation

Assuming the propensity to donate to scientists is close to that of the general U.S.

population, the fraction of scientists with a match in the donor pool should roughly equal

the fraction of Americans who are donors. The U.S. adult population in 2010 was about

235 million, and DIME contains records for 10.4 million unique contributors who made

donations between 2006 and 2014, so about 4.4% of people appear in DIME.3 We link

5.7% of our authors, which is commensurate with this fraction.

We conducted a manual audit to more rigorously evaluate our linking procedure. We

randomly sampled 319 scientists from the dimensions sample, oversampling successful links.

3Source: ff
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Within the sample of links, we also oversampled cases where there was a unique donor for

the scientists since our procedure focuses on such links and we wanted to increase our

ability to distinguish between candidate algorithms.

For each scientist, we conducted manual searches of the web and the DIME dataset to

determine any true donor matches. We use these manually linked records as the ground

truth against which we evaluate our linking procedure.

We used a receiver operating characteristic (ROC) curve to evaluate various procedures.

The ROC curve plots the false positive rate (the fraction of truly negative observations that

are coded as positive by the procedure) against the true positive rate (the fraction of truly

positive observations that are coded as positive by the procedure). A perfect procedure

would be at the top left corner, while a completely uninformative procedure would lie

somewhere in the bottom right corner. If a procedure randomly matched scientists to

donors, it would lie on the 45-degree line. Figure S1 presents such a ROC curve for several

candidate algorithms, with the algorithm that we chose highlighted in blue.

We face a tradeoff between minimizing false positives and maximising true positives,

so there were several procedures on the frontier of the ROC curve. We chose our preferred

procedure because it presents a reasonable balance between the two objectives. In section

E.2, we show that our findings are robust to alternative linking procedures.

A.5.2 Discussion of potential biases from measurement of paper ideology

Our linking procedure, like most machine-linking procedures, is imperfect; it produces

both false negatives and false positives. In this section, we discuss the possible biases that

may arise due to our linking procedure.

Nonrepresentative sample: All scientists in our linked sample have donated to a po-

litical campaign. Given that the decision to donate to political campaigns is unlikely to

be random, our sample may not be representative of the population of scientists. For

example, these scientists may have stronger ideological beliefs than the median scientist.

Additionally, scientists who donate may differ from non-donor scientists on non-political

dimensions.

Noisy Measure: CF Score is an imperfect proxy for scientist ideology for two reasons.

First, noise in the linking procedure creates some false positives. Second, our measure of

paper slant only considers the slant of authors who have CF scores. The linked authors’

influence on paper ideology might be overwhelmed by the influence of the rest of the team.
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Figure S1: ROC curve comparing linking procedures

Notes: The Figure presents the receiver operating characteristic (ROC) of various linking procedures. Each
observation is a linking procedure. The x− axis presents the False Positive Rate and the y− axis presents
the True Positive Rate. The red-line represents the 45 degree line. The blue dot denotes our preferred
linking procedure
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We expect noise in our measure of scientist ideology to attenuate our estimates of

alignment preferences towards zero. To evaluate the importance of attenuation bias, we

ask whether our estimates of alignment preferences are larger over a set of papers where the

CF score measure is less noisy. In particular, we allow our alignment measure to interact

with an indicator for whether all authors of a paper were successfully linked. We present

estimates from these specifications in Table S1. The results suggest that attenuation bias

is a limitation of our study.

Table S1: Evaluating measurement error: estimates when all authors are linked

Dependent variable:

Coverage Probability

(1) (2) (3)

Alignment 0.00058∗∗∗ 0.00051∗∗∗ 0.00042∗∗∗

(0.00011) (0.00011) (0.00011)

Alignment * All Authors Matched 0.00550∗∗∗ 0.00349∗∗∗

(0.00096) (0.00096)

Field x Paper year F.E. Yes Yes Yes
Outlet F.E. Yes Yes Yes
Paper F.E. Yes Yes Yes
Field x Outlet F.E. No No Yes
Mean of Dep Variable 0.023 0.023 0.023
Observations 5,029,439 5,029,439 5,029,439
R2 0.12418 0.12418 0.13084
Adjusted R2 0.11809 0.11809 0.12426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: This table presents estimates from the analyses described in the final paragraph of section A.5.2.
Column (1) replicates the specification from column (1) of Table S5. Column (2) adds an interaction
between Alignment and an indicator variable for whether all of a paper’s authors were successfully linked
to a CF score. We do not include the level effect of All Authors Matched because it is absorbed by the
paper FEs. Column (3) adds field-outlet fixed effects.
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B Descriptive statistics

B.1 Media outlets

We begin by providing concrete examples of outlets in our sample. Table S2 lists the

10 outlets that covered the most articles. The largest outlets in our sample include large

news aggregators like Yahoo! News, national newspapers like New York Times, national

magazines like Forbes, and international outlets like BBC. In Figure S2, we present the

number of outlets in our sample by outlet type. Most of the outlets are online news outlets

and large national newspapers. In addition, our sample includes several local news outlets.

The majority of the outlets in Table S2 are left-leaning. Figure S3 demonstrates that this

is also true in the full sample.

Table S2: Examples of outlets in sample

Outlet Scientific Articles Covered BMA Slant

msn.com 23865 -0.08
news.yahoo.com 21101 0.05
nytimes.com 9949 -0.55
dailymail.co.uk 7295 0.29
forbes.com 5247 0.06

finance.yahoo.com 4944 0.08
washingtonpost.com 4898 -0.26
bbc.co.uk 3855 -0.33
edition.cnn.com 3815 -0.26
businessinsider.com 3693 -0.06

Notes: The table presents the top ten outlets by the number of scientific articles covered. The first column
lists the outlet name. The second column lists the number of scientific articles covered. The third column
lists the outlet slant as measured by the BMA score.
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Figure S2: Distribution of outlet types

Notes: The figure presents the number of outlets by outlet type. The x−axis represents different outlet
types and the y−axis represents the number of outlets of that type in our sample.

Figure S3: Distribution of outlet ideology

Notes: The figure presents the histogram of outlets by outlet slant. The x−axis represents the outlet slant
as measured by the BMA score. The y−axis represents the number of outlets.
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B.2 Ideology of scientists and fields of science

In Figure S4, we present the distribution of CF Scores of linked scientists. Most sci-

entists in our sample are liberal. The ideological distribution of scientists in our sample is

similar to the ideological distribution of all scientists in the US (4).

Figure S5 presents the mean ideology of papers across different scientific fields. Note

that all fields, on average, are liberal-leaning. However, there is still considerable het-

erogeneity across fields. Fields like Business Science and Agriculture Science are more

conservative relative to fields like Communications and Culture.

Figure S4: Distribution of scientist ideology

Notes: The figure presents the distribution of ideology for 259, 826 linked scientists using our donations-
based measure. The x−axis represents the scientist’s ideology as measured by the CF Score. The y−axis
represents the number of scientists. The blue and red vertical lines present the CF Score of the median
Democratic and the median Republic senator, respectively.
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Figure S5: Ideology of fields of science

Notes: The figure presents differences in mean ideology across fields of science. The x−axis represents
ideology as measured by the CF Score. The y−axis represents different scientific fields. The points denoted
the mean CF score and the lines denote the 95% confidence intervals for each field.
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C Measuring ideological differences in science coverage

In this section, we define the GST measure from the main paper and present additional

results.

C.1 Formal definitions

We loosely follow notation from (Gentzkow et al., (5); henceforth GST). There are No

outlets and Np scientific papers. For each outlet-paper pair, we observe cop, the number

of times that outlet o cites paper p. For each outlet, we model cop is the realization of a

multinomial draw

cop ∼ MN(mo, qo) (1)

where mo =
∑

p cop denotes the total number of papers cited by outlet o and qo is the vector

of choice probabilities. We allow qo to vary by outlet ideology, so qo = qR for conservative

outlets and qo = qL for liberal outlets. An outlet is liberal if its BMA score is less than -0.2

and conservative if its BMA score is greater than 0.2. When computing the GST measure,

we drop outlets with BMA scores between -0.2 and 0.2.

Our goal is to measure the divergence between qR and qL. Following GST, we motivate

our divergence metric with the following thought experiment. Consider an observer who

believes that a news outlet has an equal probability of being liberal or conservative. This

observer sees a single scientific paper that was cited by the outlet, and knows the choice

probability vectors q. If qR and qL are the same, then the observer has learned nothing

about the outlet’s type. By contrast, if conservative and liberal outlets cite completely

different sets of articles, the observer has learned the outlet’s type with certainty. In

reality, the data will lie somewhere in between these extreme cases, and the divergence

measure captures the extent to which the observer is able to update about the outlet type.

Formally, we define an estimand π to be the posterior probability that this observer expects

to assign to the outlet’s true type.

π =
1

2
qR · ρ+ 1

2
qL · (1− ρ) (2)

where the vector ρ captures the posteriors that the observer would assign to the outlet
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being conservative after observing each paper.

ρp =
qRp

qRp + qDp
(3)

We estimate π from the data cop on outlets citations of scientific papers using the leave-

out estimator from GST. Let Cons define the set of conservative outlets and Lib denote

the set of liberal outlets. The estimator is

π̂ =
1

2

1

|Cons|
∑

o∈Cons

q̂o · ρ̂−p +
1

2

1

|Cons|
∑

o∈Cons

q̂o · ρ̂−p (4)

where q̂G is the empirical paper frequency for outlet o

q̂Cp =

∑
o∈Cons cop∑

o∈Cons

∑
p′ cop′

(5)

q̂Lp =

∑
o∈Lib cop∑

o∈Lib
∑

p′ cop′
(6)

and ρ̂−p is the leave-out empirical analog of ρ, i.e, the fraction of paper p’s cites that come

from conservative outlets among all outlets except o.4

Whenever we discuss GST measures, we are referring to estimates using the estimator

in equation (4).

C.2 Estimates

Table S3 presents GST measures for several subsamples of the data. We discuss the

interpretation of these estimates in the main paper.

4We discard from the sample all papers that are cited by only one news outlet.
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Table S3: GST measures of differences in citation patterns

Sample Group Comparison Estimate N Outlets N Citations

Main Lib vs. Cons 0.567 103 142847

Main Online vs. Print Newspapers 0.536 86 181382
Main TV vs. Print Newspapers 0.561 74 90967

No CF Score Lib vs. Cons 0.575 103 73832
Yes CF Score Lib vs. Cons 0.560 103 69015

Pre-2020 Lib vs. Cons 0.574 103 114387
2020, Not COVID Lib vs. Cons 0.560 90 17146
2020, Yes COVID Lib vs. Cons 0.594 88 9884

Medicine/Health Lib vs. Cons 0.559 103 75402
Biology Lib vs. Cons 0.584 101 14550
Psychology Lib vs. Cons 0.595 97 9310
Earth Sci Lib vs. Cons 0.599 98 9151
Social Sci (non-econ) Lib vs. Cons 0.576 95 4897
Physics Lib vs. Cons 0.568 81 4593
Engineering Lib vs. Cons 0.602 99 4093
Environmental Sci Lib vs. Cons 0.551 92 3566
Chemistry Lib vs. Cons 0.575 91 2537
Economics Lib vs. Cons 0.588 92 1837
Computer Sci Lib vs. Cons 0.593 85 1652
History Lib vs. Cons 0.607 77 1593
Agricultural Sci Lib vs. Cons 0.540 81 961

Notes: The table presents GST measures for various subsamples. We truncate citation counts cop so that
they are either zero (if o does not cite p) or one (if o cites p). The “Group Comparison” column explains the
definition of outlet type qo for that row. So in the first row, we report a measure of the divergence in citations
between liberal and conservative outlets, while in second row, we report a a measure of the divergence in
citations between online outlets and print newspapers. Liberal vs. conservative outlet types are defined
in the text. Online, Print Newspaper, and TV outlet types are manually coded. Field categorizations are
from Dimensions, using ANZRC codes. COVID papers are papers that appear in the CORD (6) database.

C.3 Randomization tests

We conduct randomization tests to establish statistical significance. The idea is to

compare the observed GST measure to simulated GST measures under the null hypothesis

that qR = qD. In our simulations, we randomly assign parties to outlets, so the only
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differences between q̂R and q̂D in the simulations are due to sampling error. We conduct

100 such simulations for each estimate in table S3. We visualize our procedure for the main

estimate in Figure S6, and present simulation results for all estimates in Table S4.

Figure S6: Visualizing GST randomization tests

Notes: We conduct 100 simulations of our main GST specification (the top row of table S3) in which we randomly
assign party to outlet. The simulated estimates are represented in gray, while the true value is represented with a
blue line. The true estimate is greater than any of the simulated estimates, which indicates statistical significance.
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Table S4: GST Randomization inference results

Sample Group Comparison Estimate Sim 95th pctile Sim p-value

Main Lib vs. Cons 0.567 0.510 0.00

Main Online vs. Print Newspapers 0.536 0.510 0.00
Main TV vs. Print Newspapers 0.561 0.514 0.00

No CF Score Lib vs. Cons 0.575 0.517 0.00
Yes CF Score Lib vs. Cons 0.560 0.512 0.00

Pre-2020 Lib vs. Cons 0.574 0.517 0.00
2020, Not COVID Lib vs. Cons 0.560 0.513 0.00
2020, Yes COVID Lib vs. Cons 0.594 0.533 0.00

Medicine/Health Lib vs. Cons 0.559 0.508 0.00
Biology Lib vs. Cons 0.584 0.515 0.00
Psychology Lib vs. Cons 0.595 0.524 0.00
Earth Sci Lib vs. Cons 0.599 0.527 0.00
Social Sci (non-econ) Lib vs. Cons 0.576 0.532 0.00
Physics Lib vs. Cons 0.568 0.538 0.00
Engineering Lib vs. Cons 0.602 0.538 0.00
Environmental Sci Lib vs. Cons 0.551 0.528 0.01
Chemistry Lib vs. Cons 0.575 0.533 0.01
Economics Lib vs. Cons 0.588 0.536 0.01
Computer Sci Lib vs. Cons 0.593 0.541 0.00
History Lib vs. Cons 0.607 0.535 0.00
Agricultural Sci Lib vs. Cons 0.540 0.543 0.06

Notes: For each GST specification, we conduct 100 simulations in which we randomly assign party to outlet. The
simulated p-value is the fraction of simulations for which the true estimate is less than the simulated estimate.
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D Linear probability models

We estimate models of the following type on the set of all outlet-paper pairs (o, p):

Yop = βa(Io, Ip) + γXop + ϵop , (7)

where Yop is an indicator for whether the paper was covered by the outlet at least once

between 2015-2020, a(Io, Ip) is the ideological alignment between outlet ideology Io and

paper ideology Ip, Xop represents controls, and ϵop represents idiosyncratic errors. Our

primary measure of alignment a(Io, Ip) is the absolute value of the difference in ideology

scores for the paper and outlet a(Io, Ip) = |Io − Ip|. To aid with interpretation, we stan-

dardize the measure so that a coefficient corresponds to the effect of a 1 SD increase in

alignment. Our results are robust to alternative alignment measures (see Section E.1).

The parameter β captures the association between alignment and coverage probability,

conditional on controls Xop. In all specifications, our controls Xop include fixed effects that

flexibly control for outlet-specific or paper-specific features.

We present estimates in Table S5. Column (1) is our baseline specification. Columns

(2) and (3) control for two possible confounders by which an association may arise be-

tween alignment and citation probability may arise. In column (2), we control for outlets’

propensities to cite papers within different fields of science, and in column (3), we control

for outlets’ different preferences over observable markers of academic quality. Column (4)

controls for both of these confounders.
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Table S5: Parametric estimates of alignment association (LPMs)

Dependent variable:

Coverage Probability

(1) (2) (3) (4)

Alignment 0.00058∗∗∗ 0.00046∗∗∗ 0.00054∗∗∗ 0.00042∗∗∗

(0.00011) (0.00011) (0.00011) (0.00011)

Field x Paper year F.E. Yes Yes Yes Yes
Paper F.E. Yes Yes Yes Yes
Outlet F.E. Yes No Yes No
Field x Outlet F.E. No Yes No Yes
Outlet F.E. x Paper Quality No No Yes Yes
Mean of Dep Variable 0.023 0.0231 0.023 0.0231
Observations 5,029,439 5,029,439 4,964,177 4,964,177
R2 0.12418 0.13084 0.12924 0.13585
Adjusted R2 0.11809 0.12425 0.12316 0.12927

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The table presents the parameter estimates of the linear probability model defined in Equation 7
for different sets of controls. An observation is an outlet-paper pair. The parameter of interest is β, which
captures the extent to which ideological alignment aop between an outlet and a paper is associated with
coverage probability. Alignment a(Io, Ip) is the standardized absolute value of the difference in the ideology
of the paper and outlet. We only include papers that were cited by at least one outlet. In Column (1) we
included field-year, paper, and outlet fixed effects. In column (2), we add field-outlet fixed effects, and in
column (3) we interact outlet fixed effects with the paper quality measure. In column (4), we include both
field-outlet fixed effects and the outlet fixed effect interacted with the paper quality index.

E Robustness checks

E.1 Alternate alignment measures

In our main analysis, we define alignment between an outlet and a paper as the absolute

value of the difference in the ideology a(Io, Ip) = |Io − Ip|. A potential measurement issue

is that the BMA score and CF Scores are on different scales. Even though 0 represents

the ideological center for both measures (and so the signs of the measures are consistent),

the magnitudes are incommensurate. To assuage these concerns, we employ two other
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measures of alignment.

Our first alternate measure compares relative ideological positions. For each outlet,

we estimate the quantile of their ideology in the distribution outlet ideologies q(Io). We

apply the same procedure for scientific papers q(Ip).
5 Our relative alignment measure is

the absolute value of the difference between these quantiles aq(Io, Ip) = |q(Io)− q(Ip)|. By
construction, the scales of the quantile measures are commensurate. In this measure, an

outlet is perfectly aligned with a paper if both fall at the same point in their corresponding

ideological distributions. Note that the ideological distribution of scientific ideology is left-

skewed compared to that of outlet ideology. Therefore, a paper that is as conservative as

an outlet on the relative scale will be more liberal on the absolute scale. We emphasize

that there is no simple mapping between these two alignment measures as they capture

different notions of alignment. Our second measure is a binary measure of alignment

ab(Io, Ip) = 1{sign(Io) = sign(Ia)}: an outlet and paper are aligned if they are both liberal

(conservative); otherwise, they are not aligned. This measure only relies on the sign of

the ideology and not the magnitude. This measure is invariant to any scale changes in the

ideology measure. However, there is a loss of information with this measure, since it is a

coarser measure of alignment.

Table S6 presents estimates of alignment preferences using these alternative measures.

The regression specification is that defined in Equation 7. We include field-year and paper

fixed effects in all specifications. We also include either outlet or outlet-field fixed effects.

Across all regression, we consistently find positive and quantitatively meaningful alignment

preferences. These results are significant at all conventional levels when we use the relative

alignment measure aq. The alignment preferences are both quantitatively smaller and more

imprecisely estimated with our binary alignment measure ab. The smaller magnitudes

suggest that fine ideological differences between an outlet and paper influence coverage

propensity, not just whether they are on the same side of the political aisle. The estimates

for the binary measure are less precisely estimated in part because once we account for

paper, field, and outlet fixed effects there is very little variation in the binary measure of

alignment. This is because, in many fields, most papers are liberal.

In summary, these exercises highlight that the presence of alignment preferences is not

driven by any particular definition of alignment. As one would expect, the interpretation

and magnitude of these alignment preferences do vary across these different definitions.

5Formally, P (I > Io) = q(Io), where I is distributed according to the ideology distribution of outlets.
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Table S6: Alignment associations using alternate alignment Measures

Dependent variable:

Coverage Probability

(1) (2) (3) (4)

Alignment (Relative Scale) 0.00277∗∗∗ 0.00203∗∗∗

(0.00030) (0.00030)

Alignment (Binary Scale) 0.00019∗∗ 0.00014
(0.00009) (0.00009)

Field x Paper year F.E. Yes Yes Yes Yes
Outlet F.E. Yes Yes Yes Yes
Paper F.E. Yes Yes Yes Yes
Field x Outlet F.E. No Yes No Yes
Mean of Dep Variable 0.023 0.023 0.023 0.023
Observations 5,029,439 5,029,439 5,029,439 5,029,439
R2 0.12419 0.13084 0.12417 0.13083
Adjusted R2 0.11810 0.12421 0.11808 0.12420

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The table presents the parameter estimates of the linear probability model defined in Equation 7
for different sets of controls and measures of alignment. Each observation in the model is an outlet-paper
pair. The parameter of interest is β which captures the extent to which ideological alignment aop between
an outlet and a paper is associated with coverage probability. In columns (1) and (2), alignment aq(Io, Ip)
is the absolute value of the difference in the ideology quantile of the paper and outlet and in columns (3)
and (4), alignment ab(Io, Ip) is an indicator which is equal to 1 if both the paper and outlet are Liberal
(conservative). We only include papers that were cited by at least one outlet. All columns include field-
year and paper fixed effects. Columns (1) and (3) include outlet fixed effects. Columns (2) and (4) include
outlet-field fixed effects.

E.2 Alternate Linking Procedures

In this section, we show that our main result is robust to our choice of linking pro-

cedure. In Table S7, we estimate alignment preferences for each of five different linking

procedures, including the procedure we used in the main paper. The results from our pre-

ferred procedure are given in column (1). Each of the other four columns uses a different

procedure.

20



The procedure for column (2) includes all scientists who had an exact name match in

the expanded donor sample (if a scientist has multiple exact name matches in the expanded

donor sample, we assign the scientist the mean CF score of their matches). The procedure

for column (3) includes all scientists who had an exact name match in the strict donor

sample. The procedure for column (4) includes all scientists who had a unique match with

a name-distance less than or equal to one in the strict donor sample. The procedure for

column (5) includes all scientists who had any match in the strict donor sample, and also

all scientists who had a unique match in the expanded donor sample.

In all columns, our alignment preference estimate is positive and statistically significant,

which demonstrates that our main result was not driven by the idiosyncrasies of our chosen

linking procedure.

Table S7: Alignment preferences with alternate linking procedures

Dependent variable:

Coverage Probability

(1) (2) (3) (4) (5)

Alignment 0.00058∗∗∗ 0.00031∗∗∗ 0.00059∗∗∗ 0.00036∗∗ 0.00042∗∗∗

(0.00011) (0.00011) (0.00020) (0.00017) (0.00011)

Field x Paper year F.E. Yes Yes Yes Yes Yes
Outlet F.E. Yes Yes Yes Yes Yes
Paper F.E. Yes Yes Yes Yes Yes
Mean of Dep Variable 0.023 0.023 0.024 0.023 0.023
Observations 5,029,439 4,652,619 2,869,638 3,549,590 5,961,968
R2 0.12418 0.12213 0.12151 0.12439 0.12348
Adjusted R2 0.11809 0.11602 0.11536 0.11828 0.11739

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: This table tests the robustness of our main alignment association estimates to alternative linking
procedures. We present parameter estimates of the model defined in equation 7. Column (1) replicates
the result from column (1) of Table S5 in the main paper. Columns (2) through (5) each use different
procedures, which are described in section E.2.
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E.3 Parametric quality analysis

We examine how coverage probability depends on alignment and different quality mea-

sures. We estimate the following linear LPMs

Yop = βa(Io, Ip) + αqp + γXop + ϵop , (8)

where Yop is an indicator for whether the paper was covered by the outlet at least once

between 2015-2020, a(Io, Ip) is the ideological alignment between outlet ideology Io and

paper ideology Ip, qp is the quality of paper p, Xop represents controls, and ϵop represents

idiosyncratic errors. We include field-year fixed effects and field-outlet fixed effects as

controls. We examine four measures of quality: number of academic citations, amount of

research grants, number of patent citations, and journal impact.

The results are presented in Table S8. Across all specifications, we find a positive

association between alignment and coverage probability that is comparable to our main

estimates. For each quality measure, we find that coverage probability increases in quality.

The association between quality measures and coverage probability is stronger than that

of alignment and quality measures. This result reaffirms that quality affects coverage

probability much more than alignment.
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Table S8: Parametric Estimates of Alignment and Quality Association

Dependent variable:

Coverage Probability

(1) (2) (3) (4)

Alignment 0.00009 0.00036∗∗∗ 0.00036∗∗∗ 0.00015∗∗

(0.00007) (0.00007) (0.00007) (0.00007)

Academic Citations (1000s) 0.02061∗∗∗

(0.00016)

Research Grants (log) 0.00007∗∗∗

(0.00001)

Patents (log) 0.00286∗∗∗

(0.00027)

Journal Impact 0.00002∗∗∗

(0.0000002)

Field x Year F.E. Yes Yes Yes Yes
Field x Outlet F.E. Yes Yes Yes Yes
Mean of Dep Variable 0.023 0.023 0.023 0.023
Observations 5,029,439 5,029,439 5,029,439 4,969,725
R2 0.07909 0.08269 0.08270 0.08411
Adjusted R2 0.07903 0.08203 0.08203 0.08343

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The table presents the parameter estimates of the linear probability model defined in Equation 8
for different quality measures. Each observation in the model is an outlet-paper pair. Alignment aq(Io, Ip)
is the standardized absolute value of the difference in the ideology of the paper and outlet. The quality
measures are number of academic citations, amount of research grants, number of patent citations, and
journal impact (h− index) for columns (1), (2), (3), and (4), respectively. We only include papers that were
cited by at least one outlet. All columns include field-year and filed-outlet fixed effects.
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E.4 Quality association by field of science

In Figure S7 we present the association between coverage propensity and alignment

alongside the association between coverage propensity and the quality index across fields

of science. For each field, these associations are estimated simultaneously using an LPM as

in Equation 8. The figure shows that quality is a stronger predictor of media coverage than

ideological alignment, even for fields such as Earth Science where alignment association is

the strongest.
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Figure S7: Heterogeneity in alignment and quality associations by field of science

Notes: The figure presents the relationship between alignment and quality with media coverage for different
fields of science. The x−axis represents a field of science. The y−axis presents the association between
coverage propensity and alignment as well as quality, denoted by different colors. The association is esti-
mated using (separate) linear probability models. The alignment measure and quality index are normalized
to have a mean of 0 and a standard deviation of 1.
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